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The cost of Hartree-Fock and local correlation methods is strongly dependent on the locality of the one-
particle density matrix and localized orbitals. In this paper the locality and sparsity of the one-particle density
matrix is investigated numerically and theoretically, primarily at the Hartree-Fock level, for linear alkanes
containing up to 320 carbon atoms. A method for the calculation of localized, atom-centered, occupied orbitals
is presented and compared with the Boys’ localization procedure. The atom-centered orbitals are ideally
suited for use in local-correlation calculations. The connection between the size of optimally localized orbitals,
the locality of the density matrix, and the onset of linear scaling is investigated.

1. Motivation

Localized molecular orbitals have long been used to interpret
the results of ab initio calculations.1-6 More recently, localized
orbitals have been employed to reduce the cost of SCF,7-13

DFT,14-19 tight-binding,20-22 and correlated23-37 calculations for
large molecules. An alternative approach for SCF, DFT, and
tight-binding calculations is to exploit the locality of the one-
particle density matrix directly, without ever forming a set of
molecular orbitals.38-52 In order to determine the merits of the
two approaches, we have conducted some theoretical and
numerical investigations of the locality of ab initio orbitals and
density matrices.
This paper presents several loosely connected results pertain-

ing to the locality of orbitals and density matrices for large
molecules. Section 2 contains a numerical study of the sparsity
of the SCF one-particle density matrix for linear alkanes. Two
algorithms for the production of nonorthogonal localized orbitals
from a localized density matrix are described in section 3.
Section 4 contains a numerical study of the locality of these
orbitals for the linear alkanes and a comparison of these orbitals
with the well-known Boys’ localized orbitals.1-3 In section 5
we present several theorems and conjectures relating the locality
of the one-particle density matrix to the size of optimally
localized orbitals.

2. Numerical Study of the Sparsity of the SCF
One-Particle Density Matrix for Linear Alkanes

Theoretical models of periodic solids suggest that the locality
of the one-particle density matrix is related to the size of the
HOMO-LUMO (HOMO ) higher occupied molecular orbital,
LUMO ) lowest unoccupied molecular orbital) gapG (also
known as the band gap). The density matrixP(r,r′) decays
asymptotically as53-62

and in metals, for whichG ) 0,

The optimally localized occupied orbitals, known as Wannier
orbitals, exhibit similar asymptotic decay.

While the relationship between the HOMO-LUMO gap and
decay of the density matrix has not been proven for arbitrary
nonperiodic systems,92 it seems likely that sufficiently large
linear alkanes (CnH2n+2) will exhibit behavior similar to that of
the periodic solids. The linear alkanes are known to be
insulators, and Hartree-Fock calculations using basis sets up
to 6-31G* confirm that the HOMO-LUMO gap is large (>0.5
au), so the density matrix is expected to decay rapidly. If the
density matrix is represented in a localized basis such as atomic
orbitals, it is expected to be sparse for alkane chains appreciably
longer than the decay length dictated by the band gap. The
sparsity results in the remainder of this section refer to the
atomic-orbital representation of the matrices. All calculations
were performed using the software package QChem,71 except
where otherwise indicated.

Figure 1a shows the sparsity of the density matrixP, the
overlap matrixS, the inverse overlap matrixS-1, and the Fock
matrix F for Hartree-Fock STO-3G calculations on linear
alkanes containing 10 to 320 carbon atoms. The carbon-carbon
and carbon-hydrogen bond lengths have been fixed at 2.91 au
and 2.08 au, respectively. Matrix elements 108 times smaller
than the largest matrix element were set to zero.

The overlap matrix is considerably sparser than the density
matrix. The overlap matrix is 40% sparse for C10H22, 64%
sparse for C20H42 and reaches 90% sparsity for C80H162. In
contrast the density matrix is dense for C10H22 and C20H42, with
less than 20% sparsity, and the onset of sparsity is discourag-
ingly slow. C80H162 is only 63% sparse and 90% sparsity is
not attained until C320H642!

Hartree-Fock calculations performed by other groups have
also found the onset of sparsity to be rather slow if a tight
threshold is applied. The density matrix for the polyglycine
C40N20O21H62 is found to be 50% sparse,43 using a threshold of
10-8 and a 3-21G basis. The maximum density matrix element
for the alkane C15H32 decays to∼10-4 across the length of the
molecule51 if a split valence plus polarization basis72 is used
while the density matrix for the alkene C20H22 decays even more
slowly, to ∼10-3 across the length of the molecule.51 Large
calculations exploiting sparsity have also been performed on
water clusters and graphite sheets,50 but the sparsity of the
density matrix was not reported. Sparsity results are also

P(r,r′) ∼ e-xG|r-r′|, G> 0 (1)

P(r,r′) ∼ 1/|x- x′||y- y′||z- z′|, G) 0
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available for tight-binding, DFT, and unconverged Hartree-
Fock calculations, but they are not considered in this paper.
In Figure 1b the number of nonzero matrix elements of the

matricesP, etc., is plotted as a function of alkane chain length,
using the same sparsity threshold as in Figure 1a. All the
matrices scale linearly for chain lengths beyond C20H42. While
it is not obvious from the scale of Figure 1b,S scales linearly
for the entire graph, whileP commences linear scaling at C20H42.
As discussed in sections 4 and 5, C20H42 is about the length of
the largest localized occupied orbital, again for a cutoff of 10-8.
If the cutoff is relaxed to 10-6, then linear scaling ofP
commences at C15H32. The variation of sparsity and locality
with threshold is discussed further below and in section 4.
To investigate the effect of electronic correlation on the

sparsity of the density matrix, we evaluated the Hartree-Fock

one-particle density matrix and the MP2 relaxed73 density matrix
for STO-3G C40H82. The MP2 relaxed density matrix was
calculated using the ab initio program TURBOMOLE.74 The
MP2 density matrix is noticeably less sparse than the Hartree-
Fock density matrix; 28% vs 37% for a threshold of 10-8. While
the STO-3G basis is too small for an accurate treatment of
electron correlation, the STO-3G results suggest that the one-
particle density matrix will not become dramatically more sparse
upon the inclusion of electron correlation.
These SCF and MP2 results indicate that algorithms which

exploit sparsity of the density matrix will need to use a sparsity
threshold considerably looser than 10-8 for molecules smaller
than C20H42. For many purposes a looser threshold might be
acceptable. Figures 2a,b examine the effect of varying the
threshold on the sparsity and accuracy of the density matrix.
The sparsity of the density matrix as a function of threshold is
plotted in Figure 2a for C20H42. If a tight threshold is used, the
density matrix has similar sparsity for STO-3G and 6-31G* basis
sets. The sparsity increases comparatively slowly as the
threshold is loosened for the STO-3G basis and considerably
more rapidly for the 6-31G* basis. This might lead one to hope
that sparsity could be exploited for larger basis sets, at least for
fairly loose thresholds. However, Figure 2b, which plots the
maximum eigenvalue of (P̂ - P̂truncated) as a function of

Figure 1. (a) Sparsity of the density matrix for the linear alkanes. (b)
Number of nonzero elements in the density matrix for the linear alkanes.
Hartree-Fock calculations with an STO-3G basis. Sparsity threshold
) 10-8.

Figure 2. (a) Sparsity of the density matrix as a function of sparsity
threshold for C20H42. (b) Error in the truncated density matrix as a
function of sparsity threshold for C20H42. Hartree-Fock calculations.
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threshold, shows that a given threshold has a significantly larger
effect on the accuracy of a 6-31G* density matrix than on a
STO-3G density matrix. Apparently, the combined effect of
the many small matrix elements within a given region of space
in the 6-31G* density matrix is significant. Indeed, since the
trace of the density matrix is equal to the number of electrons,
it is obvious that the average size of the matrix elements must
decrease as the basis set is expanded. Thus the size of a
reasonable truncation threshold must decrease as the basis set
is increased.
The error introduced into ab initio calculations by a loose

sparsity threshold is strongly basis dependent, and this makes
it difficult to judge the accuracy of the results. Tight (10-6-
10-8) thresholds are probably safe, but the one-particle density
matrix is effectively dense for alkane chains shorter than
C15H32-C20H42, depending on the threshold.
Locality and sparsity of the density matrix is used in two

places in the Hartree-Fock procedure, and we now comment
briefly on these.
The first place where locality is used is in the construction

of the exchange matrixK from the density matrix47-50,52

whereσ refers toR or â spin. K clearly has similar locality
properties toP, so if P scales linearly with system size thenK
will too and the cost of constructingK also scales linearly. There
is almost no overhead associated with exploiting locality in the
construction ofK and the linear-scaling algorithm provides some
computational savings even whenP is only slightly sparse.52

For the linear alkanes we expect the cost of constructingK to
scale linearly beyond C15H32-C20H42, depending on the thresh-
old.
The second place where sparsity is used is in matrix

multiplication. This is particularly important in density-matrix-
based schemes38-46,51 which replace a cubic scaling matrix
diagonalization of the Fock matrixF with several evaluations
of matrix products such asFPSPS. The multiplication based
scheme is more expensive than matrix diagonalization if the
matrices are dense and only becomes economical when con-
siderable sparsity is present. The method is nevertheless useful,
at least for the linear alkanes, because the cost of conventional
matrix diagonalization is only significant for very large systems,
of the order of 3000 basis functions or C160H322with a 6-31G*
basis, and the density matrices for such systems exhibit
considerable sparsity.

3. Algorithms for Production of Nonorthogonal Localized
Orbitals from a Localized Density Matrix

Given an atomic orbital|R〉, one can project out its occupied
component|P̂R〉 using the density matrix operatorP̂,

|P̂R(r)〉 will be about as localized asP̂(r,r′) assuming that the
atomic orbital|R(r′)〉 is much more localized thanP̂. Applica-
tion of P̂ to the complete set ofN atomic orbitals{|R〉}R leads
to a complete set of localized occupied orbitals{|P̂R〉|R. This
set of occupied orbitals is highly redundant, since the number
of atomic orbitals is far greater than the dimension of the
occupied space. In this section we describe two ways to remove
some or all of the redundant occupied orbitals. The first
algorithm selects a number of occupied orbitals equal to the
number of functions in a minimal basis (one for hydrogen, five

for carbon, etc.). This reduced set still contains some redundan-
cies but is well suited to local correlation algorithms. Indeed,
we have been able to greatly increase the locality of our local-
correlation method37 by using a redundant set of occupied
orbitals. The second algorithm removes all redundancies from
the set of occupied functions.
Expressing eq 2 in the atomic orbital basis one obtains

whereS is the overlap matrix andP the contravariant density
matrix in the atomic orbital basis. We find it helpful to use
atomic orbitals|R′〉 which are orthonormal to other orbitals on
the same nucleus

whereSAA is the portion of the overlap matrix describing orbitals
|R〉 centered on eachAth nucleus. The overlap matrix in the
|P̂R′〉 basis is then

where we have taken advantage of the idempotency condition
for the density matrix,P̂P̂) P̂. We are free to perform a unitary
rotation of the atomic orbitals{|R′〉} on eachAth nucleus such
that the set of projected orbitals{|P̂R′′〉} on that nucleus are
orthogonal,

To determine whether each atomic orbital|R′′〉 is weakly or
strongly occupied, we calculate the Mulliken population,87

(PS)R′′R′′. Strongly occupied atomic orbitals have approximately
unit occupancy, while weakly occupied orbitals have ap-
proximately zero occupancy. We note in passing that it is
possible to define atomic orbitals which diagonalize each atomic
block (PS)AA, though the corresponding projected atomic orbitals
on atom A are not orthogonal. We now consider the elimination
of linear dependencies from{|P̂R′′〉} involving orbitals|P̂R′′〉,
|P̂â′′〉, ... centered on two or more different nucleiA, B, ....
Algorithm One. This algorithm does not seek to eliminate

all linear dependencies from the basis of projected atomic
orbitals. Rather, it reduces the size of the occupied basis to
the size of a minimal basis.93 To do this, consider the number
of basis functionsmA in a minimal basis for eachAth atom in
turn (one for hydrogen, five for carbon, etc.) and choose the
mA projected atomic orbitals|P̂R′′〉 centered on theAth nucleus
with the largest orbital occupancies.
For molecules with simple bonding such as the alkanes there

are usuallymA strongly occupied orbitals on each atom, with
the remainder being weakly occupied. Under these conditions
we have always found that the minimal basis of projected
orbitals spans the occupied space. Some molecules with
complicated bonding such as SF6 exhibit a fairly even distribu-
tion of orbital occupancies on the atoms responsible for the
complicated behavior (sulfur in this example). A minimal basis

Kσ(r,r′) ) - 1
|r - r′|Pσ(r,r′)

|P̂R(r)〉 ≡ ∫ P̂(r,r′)|R(r′)〉 dr′ (2)

|P̂R〉 ) ∑
Râ

(PS)âR|â〉 (3)

|R′〉 ) ∑
R∈A

(SAA)RR′
-1/2|R〉

〈P̂R′|P̂â′〉 ) 〈R′|P̂|â′〉 ) (SPS)R′â′ )

∑
Râ

(SAA)R′R
-1/2(SPS)Râ(SBB)ââ′

-1/2

|R′′〉 ) ∑
R′∈A

UR′R′′|R′〉

〈P̂R′′|P̂â′′〉 ) δR′′â′′〈P̂R′′|P̂â′′〉

R′′ andâ′′ on the sameAth nucleus
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may not be appropriate for atoms exhibiting a continuous range
of orbital occupancies and we suggest including all projected
atomic orbitals with nonnegligible occupancies for such atoms.
Algorithm Two. This algorithm attempts to remove all linear

dependencies from the projected atomic orbitals. We begin by
selecting a projected atomic orbital|P̂R′′〉 with a large orbital
occupancy. Next, we select another projected atomic orbital
|P̂â′′〉 with a large orbital occupancy and construct the 2× 2
overlap matrix in the projected basis. A Cholesky decomposi-
tion85 of the overlap matrix is performed to produce a
decomposed matrixSC. If |P̂â′′〉 is orthogonal to|P̂R′′〉, the
diagonal matrix element ofSC corresponding to|P̂â′′〉 equals
1, and if |P̂â′′〉 is nearly linearly dependent with|P̂R′′〉, then
the diagonal matrix element is=0. If a near linear dependence
is found, |P̂â′′〉 is discarded and the corresponding row and
column ofSandSC are deleted. The procedure continues with
the selection of additional basis functions|P̂γ′′〉, adding a row
and a column to the overlap matrix and its Cholesky decom-
position at each stage, until a complete set of nonredundant
occupied functions is obtained.
The cost of a full Cholesky decomposition scales cubically

with the number of atomic orbitals, though for sparse overlap
matrices linear scaling could probably be achieved using a sparse
matrix version of the incomplete86Cholesky decomposition. The
incomplete decomposition has the virtue that the sparsity of the
overlap matrixS is preserved inSC. While the cubic cost of a
full decomposition is negligible compared with the cost of a
correlated ab initio calculation, it would be significant for very
large SCF calculations (g3 000 basis functions) using linear-
scaling algorithms.
Numerical studies of the projected orbitals|P̂R′′〉 produced

by algorithm two suggest that they contain no linear depend-
encies or near linear dependencies. To test for linear depend-
encies, the overlap matrix was constructed in the|P̂R′′〉 basis
and diagonalized. Figure 3 shows the condition number of the
overlap matrix (i.e., the ratio of the largest to the smallest
eigenvalue) for linear alkanes with chain lengths from 10 to 40
carbon atoms. An orthonormal basis has a condition number
of one, while a very-large condition number indicates a near
linear dependency. The condition number of the projected
atomic orbitals is small, around seven, and is insensitive to chain
length and basis-set size. The weak basis-set dependence
indicates that the occupied orbitals undergo small, subtle changes
as the basis increases. This is not too surprising, given that
even a minimal basis of atomic orbitals is sufficient for a

reasonable description of the occupied space. Encouragingly,
the condition number does not increase with increasing chain
length, indicating that the projected orbitals|P̂R′′〉 form a
suitable basis for the occupied space irrespective of molecule
size. For the cases considered in Figure 3, the orbitals produced
by algorithm two were always a subset of the minimal basis
produced by algorithm one.

4. Numerical Study of the Size of Localized Orbitals for
Linear Alkanes

In this section we look at the size of the projected atomic
orbitals described in section 3. As discussed in the introduction,
highly compact orbitals increase the efficiency of local SCF
and local correlation calculations, and in this context it is
interesting to compare the size of projected atomic orbitals and
Boys’ localized orbitals.
For each localized orbital, we have employed Mulliken’s

prescription87 for partitioning the corresponding electronic
charge distribution into atomic contributions belonging to a
single atom and bonding contributions belonging to a pair of
atoms. To simplify Figures 4-6, we have plotted only the
atomic charges on the carbon atoms, omitting both the bonding
charges and also the atomic charges on the hydrogen atoms.
Omitting the bonding contributions causes some minor humps
in the wings of the orbitals in Figures 4-6, but doing so provides
the clearest picture of the exponential decay of the orbital tails.
Only the largest localized orbital from each set is displayed.

For each displayed orbital, a large number of nearly identical

Figure 3. Condition number of the occupied basis produced via
algorithm two for the linear alkanes. Hartree-Fock calculations.

Figure 4. Localized orbitals for C40H82: (a) Projected atomic orbital,
(b) Boys’ localized orbital Hartree-Fock calculations, STO-3G basis.
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orbitals exist, differing chiefly in a translation by one or more
atoms along the carbon backbone. The sequence of translated
orbitals is disrupted near the ends of the carbon chain. Orbitals
near the end of the chain appear to be squashed and somewhat
more localized than orbitals in the middle of the chain.
Figures 4a,b depict the charge distribution of the largest

projected atomic orbital and Boys’ localized orbital for C40H82,
using an STO-3G basis. Most of the charge in the Boys’ orbital
is concentrated around a bonding pair of two carbon atoms. In
contrast, most of the charge in the projected orbital is distributed
evenly between three consecutive carbon atoms. This is a
necessary consequence of translational near symmetry in the
midsections of large linear alkanes; when the projection operator
is applied to an atomic orbital on a given carbon atom, the
resulting projected orbital will be approximately symmetric
about that atom. The most important feature of Figure 4a,b,
however, is not the distribution of the bulk of the charge about
two or three central atoms but rather the charge distribution in
the tails of the orbitals. Both the projected orbital and the Boys’
orbital have exponentially decaying tails, as evidenced by a
straight line on the logarithmic plots. This is exactly the kind
of decay found in the Wannier orbitals53,54and density matrices
of periodic systems with a band gap (eq 1). Intriguingly, the

Boys’ orbital and the projected orbital exhibit similar decay rates
and orbital widths, even though they are produced via very
different algorithms. This leads us to speculate thatthe size of
optimally localized orbitals is determined by the decay rate of
the density matrix, a point we return to in section 5.
To aid in the comparison of Boys’ orbitals and projected

orbitals, they have been superposed in Figure 5 for alkane chain
lengths ranging from 10 to 40 carbon atoms. Because the
projected orbital is centred on three atoms whereas the Boys’
orbital is centered on two, it is not possible to superpose the
two orbitals in a symmetrical manner. We have displayed the
projected orbital whose left-hand tail aligns with the tail of the
corresponding Boys’ orbital. As noted above a second projected
orbital exists, differing from the first by a translation of one
carbon atom to the left, and the right-hand tail of the second
projected orbital aligns with the right-hand tail of the Boys’
orbital. Figure 5 clearly shows that for large enough molecules
the tails of Boys’ orbitals and projected orbitals exhibit identical
exponential decay, while the orbital widths are similar, differing
by only one carbon atom.
Very small basis sets such as STO-3G usually have an

artificially large HOMO-LUMO gap, with the gap rapidly
decreasing to an asymptotic limit as the basis size is increased.94

For C20H42 the STO-3G HOMO-LUMO gap is 0.89 au, the
6-31G HOMO-LUMO gap is 0.60 au, and the 6-31G*
HOMO-LUMO gap is 0.60 au, while for C40H82 the STO-3G
HOMO-LUMO gap is 0.88 au and the 6-31G HOMO-LUMO
gap is 0.59 au. Equation 1 leads us to anticipate that the size
of the localized orbitals will increase as the gap decreases, and
hence that the size of the orbitals will initially increase as the
basis set is enlarged.
Figure 6 shows the largest projected orbital for C40H82, for

the STO-3G and 6-31G basis sets. On the basis of eq 1, one
would expect the tail of the STO-3G orbital to decay 1.22 times
more rapidly than the tail of the 6-31G orbital. Figure 6 agrees
qualitatively with this prediction, though we find that the STO-
3G orbital decays 1.13 times more rapidly than the 6-31G
orbital. Since eq 1 is derived from a tight-binding Hamiltonian
for an infinite periodic system, whereas Figure 6 is based on a
Hartree-Fock calculation for a large molecule, it is not
surprising that the numbers are in only qualitative agreement.
We have previously indicated that, in order for local Hartree-

Fock and local correlation methods to afford appreciable time
savings, the molecule under consideration must be larger than
the localized orbitals. The results presented in this section
suggest that the size of the orbitals is determined by the decay
rate of the density matrix and that this is only weakly dependent
(13%) on the basis set, with most of the change occurring on
going from a minimal (STO-3G) basis to a 6-31G basis.
To increase the efficiency of local algorithms, it is common

practice to truncate the exponentially decaying tails of the
orbitals below some threshold. Figure 7 shows the size of the
STO-3G projected orbital for C40H82 as a function of truncation
threshold. For a very loose threshold of 10-3-10-4 the orbital
is highly localized, with a width of just 7-9 carbon atoms. The
central carbon atom in the orbital is connected to only 3-4
carbon atoms on either sidesroughly the number of neighbors
commonly included in tight-binding calculations.38-40,42 To
achieve the accuracy required in most ab initio calculations, a
tighter threshold is required. For a threshold of 10-6 the
projected orbital covers 15 carbon atoms, increasing to 21 atoms
for a threshold of 10-8 and 29 carbon atomssabout three
quarters of the entire C40H82 carbon chainsfor a very tight
threshold of 10-10. As noted in section 2, the number of nonzero

Figure 5. Comparison of Boys’ localized orbitals with projected atomic
orbitals for the linear alkanes. Hartree-Fock calculations, STO-3G
basis.

Figure 6. Variation of projected atomic orbital with basis set for
C40H82. Hartree-Fock calculations.
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elements in the density matrix scales linearly with molecule
size once the number of carbon atoms exceeds the length of a
projected orbital.
The minimum molecule size at which local methods become

efficient is strongly dependent on the required accuracy.If
appreciable time saVings can be achieVed for a molecule size
approximately double the length of a localizedorbital, then the
minimum alkane chain length will be14-58 carbon atoms,
depending on the truncation threshold. While these results are
encouraging for one-dimensional chains, they do not augur well
for dense two- and three-dimensional solids such as diamond,
where it seems quite likely that the minimum molecule sizes
will be 14× 14 and 14× 14× 14 carbon atoms, respectively.
Liquids and other weakly bonded systems are more amenable
to linear scaling algorithms because they are less dense, and
the density matrix tends to be more localized.43,50 While all
local methods to date are based on truncation of the nonlocal
regions of the density matrix or the tails of the orbitals, it seems
that for dense three-dimensional solids and highly delocalized
systems such as metals a more sophisticated treatment of
nonlocality will be required to produce time savings without
sacrificing accuracy.95

5. Theorems and Conjectures Connecting the Locality of
the Hartree-Fock One-Particle Density Matrix and the
Size of Optimally Localized Occupied Orbitals

This section contains several theorems and conjectures
relating the locality of the Hartree-Fock one-particle density
matrix to the size of optimally localized orbitals spanning the
occupied space. More generally, the results apply to any
projection operator defining a subspace. While the theorems
are not as strong as we would like, they serve to deepen our
understanding of the numerical results.
Definitions. A well-conditioned overlap matrix is one

containing no linear dependencies or near linear dependencies.
Its condition number, the ratio of its largest and smallest
eigenvalues, is small. Awell-conditioned set of orbitalsis a
set of orbitals whose corresponding overlap matrix is well
conditioned.
Theorem 1. If a well-conditioned set of localized occupied

orbitals exists, then the density matrix describing the occupied
space is similarly localized.

Proof. Denote the localized occupied orbitals byφi, φj, and
the corresponding overlap matrix bySij. Because the orbitals
are localized, the overlap matrix is localized. The density matrix
is related to the occupied orbitals by,

BecauseS is localized and well conditioned, it can be shown
thatS-1 is similarly localized, as noted by Nunes and Vander-
bilt.40 Nunes and Vanderbilt derived this result from a general
theorem concerning the locality of the Green’s function (S -
EI )-1. A direct proof is presented in the Appendix. Since all
quantities on the right-hand side of eq 4 are localized, with a
localization width dependent on the size of the occupied orbitals,
P must also be localized.
Corollary 1.1. For the special case where the localized

orbitals are orthogonal, the localization width ofP is less than
or equal to the size of the most delocalized orbital.
Proof. This follows directly from eq 4.
Corollary 1.2. If the density matrix is delocalized, then the

set of optimally localized occupied orbitals is either ill
conditioned or delocalized.
Proof. This is just a restatement of the theorem.
Conjecture. If the density matrix is localized, then a well-

conditioned set of localized occupied orbitals exists.
Supporting EVidence. Algorithm Two in section 3 produces

a localized set of orbitals directly from a localized density
matrix. They are not guaranteed to be well conditioned, but
numerical evidence supports this conjecture. For the special
case of a periodic solid the Wannier orbitals are known to be
localized.
Discussion of the above Results.The above results pertain

only to linearly independent sets of occupied orbitals. It is of
considerable practical interest to know whether a set of localized
occupied orbitals can always be found, even when the density
matrix is delocalized, by admitting larger sets of occupied
orbitals containing several exact linear dependencies. A simple
counter example shows that localized orbitals do not always
exist. Consider the ion formed from a single electron orbiting
a long chain of evenly spaced identical nuclei. The single
occupied orbital for the system encompasses all the nuclei and
hence is highly delocalized. Since the occupied space is one
dimensional, the occupied orbital is uniquely defined and there
is no possibility of forming localized occupied orbitals, though
even in this extreme case the occupied orbital can be represented
as the projection of a single atomic orbital onto the occupied
space.

6. Conclusion

Numerical and theoretical investigations of the locality of
Hartree-Fock one-particle density matrices and localized orbit-
als have uncovered several results with significant practical
ramifications for large scale ab initio calculations.
Ramification 1. Two algorithms have been presented for

the production of atom-centered occupied orbitals. The orbitals
are localized and nonorthogonal. Each occupied orbital is
obtained by projecting a single atomic orbital onto the occupied
space. One algorithm produces a linearly independent set of
occupied orbitals, while the other algorithm produces a minimal
set of occupied orbitals, one for hydrogen, five for carbon, etc.
The minimal set of localized orbitals is ideally suited for use in
local-correlation calculations.37

Figure 7. Size of projected atomic orbital as a function of truncation
threshold for C40H82. Hartree-Fock calculations, STO-3G basis.

P(r,r′)) ∑
ij

φi(r)Sij
-1
φj(r′) (4)
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Ramification 2. The size of optimally localized occupied
orbitals is comparable with the nonlocal extent of the one-
particle density matrix. More specifically, the exponential decay
rate of the tails of the largest orbital(s) matches the exponential
decay of the density matrix. For molecules which are larger
than the largest localized orbital, the number of nonzero
elements of the density matrix grows linearly with molecule
size.
Ramification 3. Even for highly insulating systems such as

the linear alkanes, the nonlocal extent of the density matrix and
the localized orbitals is considerables7 carbon atoms using a
very loose truncation threshold of 10-3 or 29 carbon atoms using
a tight threshold of 10-10. If appreciable time savings can be
achieved for a molecule size approximately double the length
of a localized orbital, then the minimum chain length amenable
to sparse matrix calculations will be 14-58 carbon atoms,
depending on the truncation threshold. For a fairly strict sparsity
threshold of 10-8, the orbital width is 21 carbon atoms and the
density matrix does not reach 90% sparsity until C320H642. In
contrast, recent results indicate that the derivative of the density
matrix with respect to the displacement of a nucleus is very
sparse.51

Ramification 4. Loose sparsity thresholds have an unpre-
dictable, basis-set dependent effect on the accuracy of an ab
initio calculation. Because the trace of the density matrix is
equal to the number of electrons, the average size of the matrix
elements must decrease as the basis set is expanded. Thus the
size of a reasonable truncation threshold must decrease as the
basis set is increased. Tight (10-6-10-8) sparsity thresholds
appear to be safe but are only useful for chain lengths of more
than 15-20 carbon atoms.
Ramification 5. These results suggest that schemes which

exploit the locality of the density matrix in SCF calculations
will enable considerable savings for large linearly bonded
insulators such as long alkane chains and proteins. Liquids and
other weakly bonded two- and three-dimensional systems are
also amenable to linear scaling algorithms because of their
relatively low-density and localized density matrices.43,50 Lo-
cality will be less useful for dense systems with three-
dimensional bonding such as diamond and for highly delocalized
systems such as metals, except in very low-accuracy minimum
basis calculations using loose thresholds.
Ramification 6. It is highly desirable to develop a fast

treatment of the nonlocal regions of the density matrix which
yields a rigorous error bound for the ab initio energy, or which
can be converged to the correct result in a controlled manner.
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Appendix: Comment on the Locality of the Inverse of a
Hermitian Positive Definite Localized Matrix

Given a Hermitian positive definite localized matrixS, we
wish to determine an upper bound to the nonlocality ofS-1.
This has been considered previously for banded matrices90 and
for general Hermitian positive definite matrices.40 The previous
discussion of the locality ofS-1 was couched in terms of the
the Green’s function for (S- EI )-1. In this appendix we adopt
a more direct approach, expandingS-1 in a binomial series.

Without loss of generality we assume thatS is the overlap
matrix for a set of normalized basis functions. We also assume
thatShas been scaled so that its eigenvalues lie on the interval
[1/C,1], whereC is the condition number of the matrix,C g 1.
S can be written as

whereE is a local positive semidefinite matrix with maximum
eigenvalue 1-1/C, so

S-1 can then be expanded in a binomial series inE,

The (n + 1)th term in the series isEn, which can be up ton
times as delocalized asS. En decays as,

En decays exponentially withn, with the rate of decay decreasing
as the condition numberC increases.
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