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Locality and Sparsity of Ab Initio One-Particle Density Matrices and Localized Orbitals
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The cost of HartreeFock and local correlation methods is strongly dependent on the locality of the one-
particle density matrix and localized orbitals. In this paper the locality and sparsity of the one-particle density
matrix is investigated numerically and theoretically, primarily at the HariFeeck level, for linear alkanes
containing up to 320 carbon atoms. A method for the calculation of localized, atom-centered, occupied orbitals
is presented and compared with the Boys’ localization procedure. The atom-centered orbitals are ideally
suited for use in local-correlation calculations. The connection between the size of optimally localized orbitals,
the locality of the density matrix, and the onset of linear scaling is investigated.

1. Motivation While the relationship between the HOMQUMO gap and

Localized molecular orbitals have long been used to interpret decay of the density matrix has not been proven for arbitrary

the results of ab initio calculatios® More recently, localized ~ nonperiodic systent,it seems likely that sufficiently large
orbitals have been employed to reduce the cost of 3¢€F, linear aI_kar_les (Qﬂ2n+2) will e>_<h|b|t behavior similar to that of
DFT 2419 tight-binding2°-22 and correlate® 3 calculations for ~ the periodic solids. The linear alkanes are known to be
large molecules. An alternative approach for SCF, DFT, and insulators, and HartreeFock calculations using basis sets up
tight-binding calculations is to exploit the locality of the one- {0 6-31G* confirm that the HOM©LUMO gap is large £ 0.5
particle density matrix directly, without ever forming a set of @u), SO the density matrix is expected to decay rapidly. If the
molecular orbital$8-52 In order to determine the merits of the  density matrix is represented in a localized basis such as atomic
two approaches, we have conducted some theoretical andorbitals, itis expected to be sparse for alkane chains appreciably
numerical investigations of the locality of ab initio orbitals and longer than the decay length dictated by the band gap. The
density matrices. sparsity results in the remainder of this section refer to the
This paper presents several loosely connected results pertainatomic-orbital representation of the matrices. All calculations
ing to the locality of orbitals and density matrices for large were performed using the software package QCHeexcept
molecules. Section 2 contains a numerical study of the sparsitywhere otherwise indicated.
of the SCF one-particle density matrix for linear alkanes. Two  Figure 1a shows the sparsity of the density maRixthe
algorithms for the production of nonorthogonal localized orbitals overlap matrixS, the inverse overlap matrig%, and the Fock
from a localized density matrix are described in section 3. matrix F for Hartree-Fock STO-3G calculations on linear
Section 4 contains a numerical study of the locality of these g|kanes containing 10 to 320 carbon atoms. The carbarbon
orbitals for the linear alkanes and a comparison of these orbitals 3nq carborrhydrogen bond lengths have been fixed at 2.91 au

with the well-known Boys’ localized orbitafs:® In section 5 and 2.08 au, respectively. Matrix element$ fithes smaller
we present several theorems and conjectures relating the locality5n the largest matrix element were set to zero.

of the one-particle density matrix to the size of optimally

localized orbitals. The overlap matrix is considerably sparser than the density

matrix. The overlap matrix is 40% sparse foiB,,, 64%
2. Numerical Study of the Sparsity of the SCF sparse for GHa, and reaches 90% sparsity fogdBeo I
One-Particle Density Matrix for Linear Alkanes contrast the density matrix is dense fapldz2 and GoHaz, with
. o ) _less than 20% sparsity, and the onset of sparsity is discourag-
Theoretical models of penodlc_so_llds suggest that the locality ingly slow. GsoHisz is only 63% sparse and 90% sparsity is
of the one-particle density matrix is related to the size of the ; ; ]
. . - not attained until GHga2!
HOMO—-LUMO (HOMO = higher occupied molecular orbital, .
LUMO = lowest unoccupied molecular orbital) g&b (also Hartree-Fock calculations performed by other groups have
known as the band gap). The density mafi,r') decays also found the onset of sparsity to be rather slow if a tight
' ’ threshold is applied. The density matrix for the polyglycine

i —62
asymptotically &% C40N20021Hs is found to be 50% spargéusing a threshold of
1078 and a 3-21G basis. The maximum density matrix element
for the alkane GsHs, decays to~10~* across the length of the
moleculé? if a split valence plus polarization ba&iss used
while the density matrix for the alkenegEl,, decays even more
P(rr’) ~ 1x— X|ly—yllz—Z], G=0 slowly, to ~10"2 across the length of the moleciife.Large
calculations exploiting sparsity have also been performed on
The optimally localized occupied orbitals, known as Wannier water clusters and graphite she®tut the sparsity of the
orbitals, exhibit similar asymptotic decay. density matrix was not reported. Sparsity results are also

P(r,r') ~ e’*/a”’r", G>0 (1)

and in metals, for whiclc = 0,

S1089-5639(97)02919-8 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/26/1998



2216 J. Phys. Chem. A, Vol. 102, No. 12, 1998

Sparsity in the Linear Alkanes
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Figure 1. (a) Sparsity of the density matrix for the linear alkanes. (b)
Number of nonzero elements in the density matrix for the linear alkanes.
Hartree-Fock calculations with an STO-3G basis. Sparsity threshold
=108

available for tight-binding, DFT, and unconverged Hartree
Fock calculations, but they are not considered in this paper.
In Figure 1b the number of nonzero matrix elements of the
matricesP, etc., is plotted as a function of alkane chain length,
using the same sparsity threshold as in Figure la. All the
matrices scale linearly for chain lengths beyongHG,. While
it is not obvious from the scale of Figure 18 scales linearly
for the entire graph, whil® commences linear scaling aidt ..
As discussed in sections 4 and 5064, is about the length of
the largest localized occupied orbital, again for a cutoff of®10
If the cutoff is relaxed to 1, then linear scaling ofP
commences at gHs,. The variation of sparsity and locality
with threshold is discussed further below and in section 4.
To investigate the effect of electronic correlation on the
sparsity of the density matrix, we evaluated the Hartiieeck
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Figure 2. (a) Sparsity of the density matrix as a function of sparsity
threshold for GoHaz. (b) Error in the truncated density matrix as a
function of sparsity threshold for &H.,. Hartree-Fock calculations.

107

one-particle density matrix and the MP2 rela&eatensity matrix

for STO-3G GgHs2. The MP2 relaxed density matrix was
calculated using the ab initio program TURBOMOIE.The

MP2 density matrix is noticeably less sparse than the Hartree
Fock density matrix; 28% vs 37% for a threshold of 40N hile

the STO-3G basis is too small for an accurate treatment of
electron correlation, the STO-3G results suggest that the one-
particle density matrix will not become dramatically more sparse
upon the inclusion of electron correlation.

These SCF and MP2 results indicate that algorithms which
exploit sparsity of the density matrix will need to use a sparsity
threshold considerably looser than~#Gor molecules smaller
than GgH4o. For many purposes a looser threshold might be
acceptable. Figures 2a,b examine the effect of varying the
threshold on the sparsity and accuracy of the density matrix.
The sparsity of the density matrix as a function of threshold is
plotted in Figure 2a for ggHg4,. If a tight threshold is used, the
density matrix has similar sparsity for STO-3G and 6-31G* basis
sets. The sparsity increases comparatively slowly as the
threshold is loosened for the STO-3G basis and considerably
more rapidly for the 6-31G* basis. This might lead one to hope
that sparsity could be exploited for larger basis sets, at least for
fairly loose thresholds. However, Figure 2b, which plots the
maximum eigenvalue of { — Pyuncaed @S a function of
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threshold, shows that a given threshold has a significantly larger for carbon, etc.). This reduced set still contains some redundan-
effect on the accuracy of a 6-31G* density matrix than on a cies but is well suited to local correlation algorithms. Indeed,
STO-3G density matrix. Apparently, the combined effect of we have been able to greatly increase the locality of our local-
the many small matrix elements within a given region of space correlation metholl by using a redundant set of occupied
in the 6-31G* density matrix is significant. Indeed, since the orbitals. The second algorithm removes all redundancies from
trace of the density matrix is equal to the number of electrons, the set of occupied functions.
it is obvious that the average size of the matrix elements must Expressing eq 2 in the atomic orbital basis one obtains
decrease as the basis set is expanded. Thus the size of a R
reasonable truncation threshold must decrease as the basis set |PaC= Z(P&Mﬂﬂ 3)
is increased. o

The error introduced into ab initio calculations by a loose
sparsity threshold is strongly basis dependent, and this make
it difficult to judge the accuracy of the results. Tight (&
1078) thresholds are probably safe, but the one-particle density
matrix is effectively dense for alkane chains shorter than
CisH32—CyoH42, depending on the threshold. , _

Locality and sparsity of the density matrix is used in two o' L= Z(SAA)Q;,’ZWD
places in the HartreeFock procedure, and we now comment e
briefly on these.

The first place where locality is used is in the construction
of the exchange matriK from the density matrik—50.52

T _1r,|PU(r,r') Pa’|PB'O= [@'|P|B C= (SPyp =
;(SA o (SPYos(Sen)si”

WhereS is the overlap matrix an® the contravariant density

matrix in the atomic orbital basis. We find it helpful to use
atomic orbitalga’ Owhich are orthonormal to other orbitals on
the same nucleus

whereSaa is the portion of the overlap matrix describing orbitals
laUcentered on eachth nucleus. The overlap matrix in the
|Pa’Obasis is then

K, (rr)=-—

whereo refers toa or § spin. K clearly has similar locality
properties tdP, so if P scales linearly with system size th&n
will too and the cost of constructing also scales linearly. There ~ Where we have taken advantage of the idempotency condition
is almost no overhead associated with exploiting locality in the for the density matrixPP = P. We are free to perform a unitary
construction oK and the linear-scaling algorithm provides some  rotation of the atomic orbital§|a’' [} on eachAth nucleus such

computational savings even whéhis only slightly sparsé&? that the set of projected orbita{gPo’} on that nucleus are
For the linear alkanes we expect the cost of construdfirtg orthogonal,
scale linearly beyond fsHs,—CygH42, depending on the thresh-
old. o' = zAUa.a,JoUD
(oS

The second place where sparsity is used is in matrix
multiplication. This is particularly important in density-matrix-
based schem&s46:51 which replace a cubic scaling matrix
diagonalization of the Fock matri% with several evaluations
of matrix products such asPSPS The multiplication based
scheme is more expensive than matrix diagonalization if the 14 getermine whether each atomic orbital’Ois weakly or
matrices are dense and only becomes economical when CONgirongly occupied, we calculate the Mulliken populafi®n,

siderable sparsity is present. The method is nevertheless usefuI(PSa,,a,,_ Strongly occupied atomic orbitals have approximately
at least for the linear alkanes, because the cost of conventionalunit occupancy, while weakly occupied orbitals have ap-

matrix diagonalization is only significant for very large systems, proximately zero occupancy. We note in passing that it is

Bo'|BR" O 8, P |BB"D

o' andp" on the saméth nucleus

of the order of 3000 basis functions ofddszowith @ 6-31G*  hosgiple to define atomic orbitals which diagonalize each atomic
basis, and the density matrices for such systems exhibit yock (P, though the corresponding projected atomic orbitals
considerable sparsity. on atom A are not orthogonal. We now consider the elimination

of linear dependencies froffiPa’’ [ involving orbitals|PaC)

|PS"'0 ... centered on two or more different nuckiB, ....
Algorithm One. This algorithm does not seek to eliminate

Given an atomic orbitall] one can project out its occupied  all linear dependencies from the basis of projected atomic

3. Algorithms for Production of Nonorthogonal Localized
Orbitals from a Localized Density Matrix

componentPolusing the density matrix operaté; orbitals. Rather, it reduces the size of the occupied basis to
the size of a minimal basf. To do this, consider the number
|Pa(r) (= f P(r,r)|o(r) Cdr’ 2) of basis functionsm in a minimal basis for eacAth atom in

. . turn (one for hydrogen, five for carbon, etc.) and choose the
[Pa(r)Owill be about as localized aB(r,r') assuming that the ~ ma projected atomic orbitalg’a’' Ccentered on théth nucleus

atomic orbital|a(r")lis much more localized thain. Applica- with the largest orbital occupancies.
tion of P to the complete set dfl atomic orbitals{ o, leads For molecules with simple bonding such as the alkanes there
to a complete set of localized occupied orbitgBal,. This are usuallyma strongly occupied orbitals on each atom, with

set of occupied orbitals is highly redundant, since the number the remainder being weakly occupied. Under these conditions
of atomic orbitals is far greater than the dimension of the we have always found that the minimal basis of projected
occupied space. In this section we describe two ways to removeorbitals spans the occupied space. Some molecules with
some or all of the redundant occupied orbitals. The first complicated bonding such as §&&xhibit a fairly even distribu-
algorithm selects a number of occupied orbitals equal to the tion of orbital occupancies on the atoms responsible for the
number of functions in a minimal basis (one for hydrogen, five complicated behavior (sulfur in this example). A minimal basis
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Condition Number of the Occupied Basis C,Hg, STO-3G
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Figure 3. Condition number of the occupied basis produced via C,He, STO-3G

algorithm two for the linear alkanes. HartreBock calculations. Boys localised obital.
may not be appropriate for atoms exhibiting a continuous range 107 |
of orbital occupancies and we suggest including all projected >
atomic orbitals with nonnegligible occupancies for such atoms. I /1 H
Algorithm Two. This algorithm attempts to remove all linear 107 \
dependencies from the projected atomic orbitals. We begin by
selecting a projected atomic orbitia'' Owith a large orbital
occupancy. Next, we select another projected atomic orbital
|PB" Owith a large orbital occupancy and construct the 2
overlap matrix in the projected basis. A Cholesky decomposi-
tion® of the overlap matrix is performed to produce a 10° |
decomposed matrigC. If |PB"Ois orthogonal to|Pa"[) the
diagonal matrix element o8 corresponding taPB" Uequals

Charge per Carbon Atom
=

1, and if |PB"Dis nearly linearly dependent witfPo''[) then 107 e e
the diagonal matrix element 4g0. If a near linear dependence carbons

is found, |PB"Ois discarded and the corresponding row and Figure 4. Localized orbitals for GHgz: (a) Projected atomic orbital,
column ofSandSC are deleted. The procedure continues with (b) Boys’ localized orbital HartreeFock calculations, STO-3G basis.
the selection of additional basis functiofy ' [] adding a row
and a column to the overlap matrix and its Cholesky decom- reasonable description of the occupied space. Encouragingly,
position at each stage, until a complete set of nonredundantthe condition number does not increase WithAincreasing chain
occupied functions is obtained. length, indicating that the projected orbitglBo'0form a

The cost of a full Cholesky decomposition scales cubically syitable basis for the ocpupied.spa}ce irrespectivg of molecule
with the number of atomic orbitals, though for sparse overlap SiZe- Fo_r the cases considered in Figure 3, the orb|_ta_ls produged
matrices linear scaling could probably be achieved using a sparsd®y @lgorithm two were always a subset of the minimal basis
matrix version of the incompleteCholesky decomposition. The ~ Preduced by algorithm one.
incomplete decomposition has the virtue that the sparsity of the
overlap matrixSis preserved irg°. While the cubic cost of a
full decomposition is negligible compared with the cost of a

4. Numerical Study of the Size of Localized Orbitals for
Linear Alkanes

correlated ab initio calculation, it would be significant for very In this section we look at the size of the projected atomic
Iargt_a SCF ca_llculationsz(S 000 basis functions) using linear-  orbitals described in section 3. As discussed in the introduction,
scaling algorithms. highly compact orbitals increase the efficiency of local SCF

Numerical studies of the projected orbitaf' Cproduced and local correlation calculations, and in this context it is
by algorithm two suggest that they contain no linear depend- interesting to compare the size of projected atomic orbitals and
encies or near linear dependencies. To test for linear depend-Boys’ localized orbitals.
encies, the overlap matrix was constructed in [{Pe" Obasis For each localized orbital, we have employed Mulliken’'s
and diagonalized. Figure 3 shows the condition number of the prescriptio” for partitioning the corresponding electronic
overlap matrix (i.e., the ratio of the largest to the smallest charge distribution into atomic contributions belonging to a
eigenvalue) for linear alkanes with chain lengths from 10 to 40 single atom and bonding contributions belonging to a pair of
carbon atoms. An orthonormal basis has a condition numberatoms. To simplify Figures 46, we have plotted only the
of one, while a very-large condition number indicates a near atomic charges on the carbon atoms, omitting both the bonding
linear dependency. The condition number of the projected charges and also the atomic charges on the hydrogen atoms.
atomic orbitals is small, around seven, and is insensitive to chain Omitting the bonding contributions causes some minor humps
length and basis-set size. The weak basis-set dependencé the wings of the orbitals in Figures4, but doing so provides
indicates that the occupied orbitals undergo small, subtle changeghe clearest picture of the exponential decay of the orbital tails.
as the basis increases. This is not too surprising, given that Only the largest localized orbital from each set is displayed.
even a minimal basis of atomic orbitals is sufficient for a For each displayed orbital, a large number of nearly identical
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Comparison of Boys Localised Orbitals with Projected Atomic Orbitals
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Figure 6. Variation of projected atomic orbital with basis set for
CaoHs2. Hartree-Fock calculations.

orbitals exist, differing chiefly in a translation by one or more
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Boys’ orbital and the projected orbital exhibit similar decay rates
and orbital widths, even though they are produced via very
different algorithms. This leads us to speculate thatsize of
optimally localized orbitals is determined by the decay rate of
the density matrixa point we return to in section 5.

To aid in the comparison of Boys’ orbitals and projected
orbitals, they have been superposed in Figure 5 for alkane chain
lengths ranging from 10 to 40 carbon atoms. Because the
projected orbital is centred on three atoms whereas the Boys’
orbital is centered on two, it is not possible to superpose the
two orbitals in a symmetrical manner. We have displayed the
projected orbital whose left-hand tail aligns with the tail of the
corresponding Boys’ orbital. As noted above a second projected
orbital exists, differing from the first by a translation of one
carbon atom to the left, and the right-hand tail of the second
projected orbital aligns with the right-hand tail of the Boys’
orbital. Figure 5 clearly shows that for large enough molecules
the tails of Boys’ orbitals and projected orbitals exhibit identical
exponential decay, while the orbital widths are similar, differing
by only one carbon atom.

Very small basis sets such as STO-3G usually have an
artificially large HOMO-LUMO gap, with the gap rapidly
decreasing to an asymptotic limit as the basis size is incré4sed.
For GHa, the STO-3G HOMG-LUMO gap is 0.89 au, the
6-31G HOMGO-LUMO gap is 0.60 au, and the 6-31G*
HOMO—-LUMO gap is 0.60 au, while for gHg, the STO-3G
HOMO-LUMO gap is 0.88 au and the 6-31G HOMQUMO
gap is 0.59 au. Equation 1 leads us to anticipate that the size
of the localized orbitals will increase as the gap decreases, and
hence that the size of the orbitals will initially increase as the
basis set is enlarged.

Figure 6 shows the largest projected orbital foptd,, for
the STO-3G and 6-31G basis sets. On the basis of eq 1, one
would expect the tail of the STO-3G orbital to decay 1.22 times
more rapidly than the tail of the 6-31G orbital. Figure 6 agrees
qualitatively with this prediction, though we find that the STO-
3G orbital decays 1.13 times more rapidly than the 6-31G
orbital. Since eq 1 is derived from a tight-binding Hamiltonian
for an infinite periodic system, whereas Figure 6 is based on a
Hartree-Fock calculation for a large molecule, it is not
surprising that the numbers are in only qualitative agreement.

We have previously indicated that, in order for local Hartree

atoms along the carbon backbone. The sequence of translatedfock and local correlation methods to afford appreciable time
orbitals is disrupted near the ends of the carbon chain. Orbitalssavings, the molecule under consideration must be larger than
near the end of the chain appear to be squashed and somewhdbe localized orbitals. The results presented in this section
more localized than orbitals in the middle of the chain. suggest that the size of the orbitals is determined by the decay
Figures 4a,b depict the charge distribution of the largest rate of the density matrix and that this is only weakly dependent
projected atomic orbital and Boys’ localized orbital farBss, (13%) on the basis set, with most of the change occurring on
using an STO-3G basis. Most of the charge in the Boys’ orbital 90ing from a minimal (STO-3G) basis to a 6-31G basis.
is concentrated around a bonding pair of two carbon atoms. In  To increase the efficiency of local algorithms, it is common
contrast, most of the charge in the projected orbital is distributed practice to truncate the exponentially decaying tails of the
evenly between three consecutive carbon atoms. This is aorbitals below some threshold. Figure 7 shows the size of the
necessary consequence of translational near symmetry in theSTO-3G projected orbital for {gHs, as a function of truncation
midsections of large linear alkanes; when the projection operatorthreshold. For a very loose threshold of #6104 the orbital
is applied to an atomic orbital on a given carbon atom, the is highly localized, with a width of just#9 carbon atoms. The
resulting projected orbital will be approximately symmetric central carbon atom in the orbital is connected to onty3
about that atom. The most important feature of Figure 4a,b, carbon atoms on either sigeoughly the number of neighbors
however, is not the distribution of the bulk of the charge about commonly included in tight-binding calculatiof%:4242 To
two or three central atoms but rather the charge distribution in achieve the accuracy required in most ab initio calculations, a
the tails of the orbitals. Both the projected orbital and the Boys’ tighter threshold is required. For a threshold of-4@he
orbital have exponentially decaying tails, as evidenced by a projected orbital covers 15 carbon atoms, increasing to 21 atoms
straight line on the logarithmic plots. This is exactly the kind for a threshold of 10® and 29 carbon atomsabout three
of decay found in the Wannier orbit&¥$*and density matrices  quarters of the entire fgHs, carbon chain-for a very tight
of periodic systems with a band gap (eq 1). Intriguingly, the threshold of 10%%. As noted in section 2, the number of nonzero
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Size of Projected Atomic Orbital vs Truncation Threshold
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Figure 7. Size of projected atomic orbital as a function of truncation

threshold for GoHg». Hartree-Fock calculations, STO-3G basis.

elements in the density matrix scales linearly with molecule

Maslen et al.

Proof. Denote the localized occupied orbitals y ¢;, and
the corresponding overlap matrix I8;. Because the orbitals
are localized, the overlap matrix is localized. The density matrix
is related to the occupied orbitals by,

P(r.r)= " ,0S; ¢, 4)
]

BecauseS is localized and well conditioned, it can be shown
thatSt is similarly localized, as noted by Nunes and Vander-
bilt.° Nunes and Vanderbilt derived this result from a general
theorem concerning the locality of the Green’s functi@—
€l)~1. A direct proof is presented in the Appendix. Since all
guantities on the right-hand side of eq 4 are localized, with a
localization width dependent on the size of the occupied orbitals,
P must also be localized.

Corollary 1.1. For the special case where the localized
orbitals are orthogonal, the localization width Bfis less than
or equal to the size of the most delocalized orbital.

Proof. This follows directly from eq 4.

Corollary 1.2. If the density matrix is delocalized, then the
set of optimally localized occupied orbitals is either ill

size once the number of carbon atoms exceeds the length of aonditioned or delocalized.

projected orbital.

The minimum molecule size at which local methods become
efficient is strongly dependent on the required accuralfy.
appreciable time sangs can be achiged for a molecule size
approximately double the length of eclalizedorbital, then the
minimum alkane chain length will b&4—58 carbon atoms,
depending on the truncation threshol@Vhile these results are
encouraging for one-dimensional chains, they do not augur well
for dense two- and three-dimensional solids such as diamond
where it seems quite likely that the minimum molecule sizes
will be 14 x 14 and 14x 14 x 14 carbon atoms, respectively.

Liquids and other weakly bonded systems are more amenable . U .
d:on5|derable practical interest to know whether a set of localized

to linear scaling algorithms because they are less dense, an
the density matrix tends to be more localiZéd8 While all

local methods to date are based on truncation of the nonlocal

regions of the density matrix or the tails of the orbitals, it seems
that for dense three-dimensional solids and highly delocalized

systems such as metals a more sophisticated treatment of

nonlocality will be required to produce time savings without
sacrificing accurac$®

5. Theorems and Conjectures Connecting the Locality of
the Hartree—Fock One-Particle Density Matrix and the
Size of Optimally Localized Occupied Orbitals

This section contains several theorems and conjectures

relating the locality of the HartreeFock one-particle density
matrix to the size of optimally localized orbitals spanning the
occupied space. More generally, the results apply to any

Proof. This is just a restatement of the theorem.
Conjecture. If the density matrix is localized, then a well-
conditioned set of localized occupied orbitals exists
Supporting Ezidence Algorithm Two in section 3 produces
a localized set of orbitals directly from a localized density
matrix. They are not guaranteed to be well conditioned, but
numerical evidence supports this conjecture. For the special
case of a periodic solid the Wannier orbitals are known to be

'localized.

Discussion of the above ResultsThe above results pertain
only to linearly independent sets of occupied orbitals. It is of

occupied orbitals can always be found, even when the density
matrix is delocalized, by admitting larger sets of occupied
orbitals containing several exact linear dependencies. A simple
counter example shows that localized orbitals do not always
xist. Consider the ion formed from a single electron orbiting
a long chain of evenly spaced identical nuclei. The single
occupied orbital for the system encompasses all the nuclei and
hence is highly delocalized. Since the occupied space is one
dimensional, the occupied orbital is uniquely defined and there
is no possibility of forming localized occupied orbitals, though
even in this extreme case the occupied orbital can be represented
as the projection of a single atomic orbital onto the occupied
space.

6. Conclusion

Numerical and theoretical investigations of the locality of

projection operator defining a subspace. While the theorems Hartree-Fock one-particle density matrices and localized orbit-
are not as strong as we would like, they serve to deepen ourals have uncovered several results with significant practical

understanding of the numerical results.
Definitions. A well-conditioned overlap matrix is one

ramifications for large scale ab initio calculations.
Ramification 1. Two algorithms have been presented for

containing no linear dependencies or near linear dependenciesthe production of atom-centered occupied orbitals. The orbitals

Its condition number the ratio of its largest and smallest
eigenvalues, is small. Avell-conditioned set of orbitals a
set of orbitals whose corresponding overlap matrix is well
conditioned.

Theorem 1. If a well-conditioned set of localized occupied
orbitals exists, then the density matrix describing the occupied
space is similarly localized.

are localized and nonorthogonal. Each occupied orbital is
obtained by projecting a single atomic orbital onto the occupied
space. One algorithm produces a linearly independent set of
occupied orbitals, while the other algorithm produces a minimal
set of occupied orbitals, one for hydrogen, five for carbon, etc.
The minimal set of localized orbitals is ideally suited for use in
local-correlation calculation®.
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Ramification 2. The size of optimally localized occupied Without loss of generality we assume ti&its the overlap
orbitals is comparable with the nonlocal extent of the one- matrix for a set of normalized basis functions. We also assume
particle density matrix. More specifically, the exponential decay thatS has been scaled so that its eigenvalues lie on the interval
rate of the tails of the largest orbital(s) matches the exponential [1/C,1], whereC is the condition number of the matri&, > 1.
decay of the density matrix. For molecules which are larger S can be written as
than the largest localized orbital, the number of nonzero
elements of the density matrix grows linearly with molecule S=1l-e¢
size.

Ramification 3. Even for highly insulating systems such as
the linear alkanes, the nonlocal extent of the density matrix and
the localized orbitals is considerabt& carbon atoms using a &l < 1—1/C, 0ij
very loose truncation threshold of 10or 29 carbon atoms using
a tight threshold of 10%. If appreciable time savings can be S-1 can then be expanded in a binomial series,in
achieved for a molecule size approximately double the length
of a localized orbital, then the minimum chain length amenable Sl=|4+e++ ...
to sparse matrix calculations will be 448 carbon atoms, ) o )
depending on the truncation threshold. For a fairly strict sparsity The (@ + 1)" term in the series is", which can be up to
threshold of 108, the orbital width is 21 carbon atoms and the times as delocalized & <" decays as,
density matrix does not reach 90% sparsity unitdesz. In

wheree is a local positive semidefinite matrix with maximum
eigenvalue +1/C, so

contrast, recent results indicate that the derivative of the density |€irj]|5 (1-10)" Oij
matrix with respect to the displacement of a nucleus is very
sparsé! ~expn/C), C>1 and n>1 (Al)

Ramification 4. Loose sparsity thresholds have an unpre-
dictable, basis-set dependent effect on the accuracy of an a
initio calculation. Because the trace of the density matrix is
equal to the number of electrons, the average size of the matrixgeferences and Notes
elements must decrease as the basis set is expanded. Thus the
size of a reasonable truncation threshold must decrease as the

€" decays exponentially with, with the rate of decay decreasing
bas the condition numbet increases.
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